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Epitaxial thin (110) films of the weak ferromagnet NiF2 were deposited on single-crystal MgF2 (110)
substrates via molecular-beam epitaxy. Subsequently polycrystalline Co was grown on the NiF2 film. The
antiferromagnetic ordering of the NiF2 was monitored as a function of temperature via neutron diffraction and
the exchange biasHE of the Co layers was measured via standard magnetometry measurements. Because in
NiF2 the spins lie in the(001) plane, the maximumHE is observed after cooling the sample with a cooling field
in the film plane perpendicular to the[001] direction of the NiF2. In 60 nm, 49 nm, and 38 nm thick NiF2

samples, the Néel temperature isTN<81 K, which is significantly larger than the bulk value ofTN=73.2 K.
This enhancement also occurs in films without Co overlayers and thus is not due to a proximity effect. For the
38 nm sample with a Co overlayer cooled in a 50 kOe field,HE.0 and vanishes at a blocking temperature
sTBd which coincides with theTN of the films. When the sample is cooled in 2.0 kOe,HE,0, disappearing at
T=55 K, reappearing atT=65 K, and finally disappearing once again atT=81 K. For the 12 nm thick NiF2
sample,TB!TN. Strain-induced enhancement of ferromagnetic exchange interactions between the nearest-
neighbor Ni2+ ions along thec axis may be responsible for theTN enhancement. These results also demonstrate
that in general, a diminishedTB is not necessarily due to a lowerTN.
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I. INTRODUCTION

Exchange biassHEd refers to the shift of the magnetic
hysteresis loop of a ferromagnet(F) away fromH=0 when
the F is coupled to an antiferromagnet(AF) or a ferrimagnet.
It was originally discovered in Co particles whose surface
was oxidized to form CoO.1 This effect has been observed in
a large number of systems, including ferrimagnetic/
ferromagnetic bilayers.2,3 HE vanishes above a temperature
conventionally denoted as the blocking temperatureTB. Bi-
layer systems in which the AF is below a critical thickness
tC, which is system dependent, generally have a much lower
TB compared to the Néel ordering temperatureTN of the bulk
AF.4,5 This reduction ofTB could be due to the decrease of
TN because of finite size or strain effects,6,7 but it is often
difficult to unambiguously distinguish betweenTB and TN.
By performing neutron diffraction on single crystalline
Fe3O4/CoO multilayers, it was recently shown that theTN of
CoO layers increases when the thickness of CoO is less than
5 nm, whereasTB decreases in that thickness regime.8 This
increase inTN was interpreted to arise from the proximity of
the CoO layers to the ferrimagnetic Fe3O4 layers, which have
a much higher-ordering temperature than CoO(for bulk
Fe3O4 TC=858 K, and for bulk CoOTN=291 K). It was also
recently reported that the FeF2 thin film TN can be enhanced
to TN,82 K (bulk TN=78.4 K) when FeF2/ZnF2 multilayers
are grown on MgO(100) substrates with FeF2 layer thick-
nesses between 10 and 15 monolayers.9 This enhancement
was attributed to the strain in FeF2 due to the small lattice
mismatch between these two materials.

In this paper we report on the epitaxial growth and ex-
change bias of the weak ferromagnet NiF2. We find several
interesting new phenomena, including:(1) a significant in-
crease inTN with respect to bulk, possibly due to strain;(2)
a significant exchange bias in NiF2 films with Co overlayers;
(3) a reentrant exchange bias behavior for intermediate
(38 nm) NiF2 thin-film thicknesses; and(4) a significant dif-
ference in theTN and TB for thin NiF2 sampless12 nmd.
These results are discussed in terms of the known magnetic
properties of NiF2.

The properties of NiF2 in bulk form can be summarized as
follows. NiF2 shares the rutile crystal structure with MgF2,
FeF2, MnF2, CoF2, and ZnF2, having lattice constantsa=b
=0.4651 nm andc=0.3084 nm at room temperature.10 For
NiF2 the magnetic Hamiltonian is11
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whereJij are magnetic exchange interactions between Ni2+

ions,A is a single-ion magnetic anisotropy,E is an additional
anisotropy term arising from spin-orbit coupling in the Ni2+

ions, and thex8 and y8 axes are at 45° relative to the crys-
talline a and b axes. Also in the third term, the sums over
spins i and j refer to spins on opposite sublattices. Because
the single-ion anisotropy termA is positive, at low tempera-
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tures the spins lie in the(001) plane, in contrast to FeF2,
MnF2, and CoF2, whereA,0 (resulting in spins along the
[001] direction). The competition between the rhombic term
E (in the other fluorides,0), which tends to align the spins
perpendicular to each other, and the exchange term, which
tends to align them antiparallel to each other, causes a cant-
ing of the spins in thea-b plane.12 BecauseE!Jz, with z
=8 being the number of next-nearest neighbors for each site,
the canting angle is small, approximately 0.43°.12 This re-
sults in a small spontaneous magnetic moment, and hence
NiF2 is a weak ferromagnet. Single-crystal samples in prin-
ciple can be made into a single magnetic domain by applying
a large field along the[100] or [010] direction belowTN.13

The value ofTN=73.2 K has been verified on bulk single
crystals via heat capacity,13 magnetization,14 and thermal
expansion15 measurements. The low-temperature magnetic
structure and the dominant exchange interactions are shown
in Fig. 1.

The exchange constants have been determined from in-
elastic neutron scattering:12 J1=0.22 cm−1 (ferromagnetic
coupling between ions along thec axis, nearest neighbors),
J2=−13.87 cm−1 (antiferromagnetic coupling between corner
to body center ions, next-nearest neighbors), J3=−0.79
cm−1 (antiferromagnetic coupling between ions along thea
or b axis, next-next-nearest neighbors). Note thatJ2@J1,J3,
and thus dominates the exchange interactions. Spins in(110)
planes are almost compensated, except for the small sponta-
neous canting, since the magnetic moments of the Ni2+ ions
on the vertices of the body-centered tetragonal(bct) lattice
tend to point opposite to those at the center of the unit cell.

II. EXPERIMENTAL DETAILS

A. Growth

All samples were grown on commercially grown and pol-
ished (110) MgF2 single-crystal substrates by molecular-
beam epitaxy(MBE) at a growth rate of,0.02 nm/s, moni-
tored by quartz-crystal monitors. The substrate was rinsed in
methanol for 10 min prior to transfer to the MBE chamber

with a base pressure of 1.0310−9 mbar. Before the deposi-
tion, the substrate was heated to 297°C for 30 min. NiF2 was
then deposited onto the substrate by electron-beam evapora-
tion of compressed NiF2 pellets. The growth pressure during
evaporation was,5.0310−8 mbar. After the growth of the
NiF2 layer, a polycrystalline Co film, with a nominal thick-
ness of 18 nm, was deposited at 125°C. The actual thick-
nesses were measured after growth via x-ray reflectivity, as
discussed below. In order to prevent oxidation, all samples
were capped with 5 nm MgF2 deposited at room tempera-
ture.

B. Structural characterization

The surface crystal structure was analyzedin situ via re-
flection high-energy electron diffraction(RHEED). The crys-
tallography and interface structure was analyzedex situfrom
x-ray diffraction and reflectivity data, obtained from a rotat-
ing anode source using CuKa radiation. In-plane lattice pa-
rameters were determined from Bragg reflections with a
component of the x-ray momentum-transfer vectorq point-
ing in the plane of the sample.16,17 Reflectivity data were fit
to a recursive optical model to determine the thickness of
each layer, as well as the interface roughness between adja-
cent layers.18

C. Magnetization measurements

The exchange bias was measured in a superconducting
quantum interference device(SQUID) magnetometer after
field cooling the sample fromT=100 K toT=5 K. Both the
cooling field HCF and the measuring fieldH were applied
parallel to the NiF2 [110] direction, that is, in the plane of the
sample and perpendicular to thec axis. No exchange bias
was observed ifHCF was applied parallel to thec axis. This
may occur because the moments in the F and AF layers are
perpendicular to each other during cooling in this situation,
so that the net interface interaction between the antiferro-

magnet and the ferromagnet isJISWF ·SWAF=0, whereJI is an

effective interface exchange interaction andSWF and SWAF are
the spins in the F and AF layers, respectively.19

Additional measurements were carried out using a vibrat-
ing sample magnetometer(VSM) which allowed us to cool
the sample in a magnetic field and then rotate the sample at
low temperatures in order to measureM 'HCF.

D. Magnetic neutron diffraction

Neutron-diffraction measurements were carried out at the
NIST Center for Neutron Research. The BT-2 and BT-9
triple-axis spectrometers were used with a neutron wave-
length of 0.235 nm. A closed cycle refrigerator was used to
cool the sample to 12 K. The(001)NiF2 magnetic Bragg re-
flection, which is sensitive to the ordering of spins in the
(001) planes, was monitored as a function of temperature in
order to determineTN. Note that the existence of this reflec-
tion also proves that the magnetic order in the film is that of
NiF2. This peak is normally absent for the other antiferro-
magnetic rutile fluorides(FeF2, MnF2, and CoF2) due to the

FIG. 1. Crystalline NiF2 structure(small and large circles rep-
resent F− and Ni2+ ions, respectively) with one possible magnetic
arrangement at low temperatures. Another possible arrangement is
with the spins along theb axis. The exchange interactionsJ1, J2,
andJ3 are indicated.
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neutron magnetic scattering selection rules for their localized
spins pointing along the[001] direction.20

III. RESULTS AND DISCUSSION

A. Structure

Given that epitaxial growth of NiF2 films has not, to the
best of our knowledge, been reported previously, we present
a detailed description of the structure of our films.

Figure 2 shows x-ray reflectivity scans for three NiF2/Co
bilayers. The fit parameters are summarized in Table I. The
fits show that the roughness at the NiF2/Co interface is
<0.3 nm, which is significantly smaller than the roughness
observed in single-crystal FeF2/Co bilayersss<0.8 nmd.21

On the other hand, the Co surface is much rougher than the
NiF2 surface(see Table I), as is the case in FeF2/Co bilayers.

Figure 3 shows the out-of-plane x-ray diffraction scan for
the samples used in this study. The films are clearly strongly
(110) oriented. For the two thinnest samples, finite-size
fringes can be observed about the(110) and(220) reflections,
indicating that the top and bottom surfaces of the NiF2 films
are very smooth, in qualitative agreement with the reflectiv-
ity data. For the two thinnest samples, a Co hcp(0001) or fcc
(111) peak is also observed. A Lorentzian rocking curve was
observed for the NiF2 (220) reflection with a full width at
half maximum (FWHM) of 0.19°, which is significantly
smaller than widths of FeF2 films of similar thickness grown
on MgO (100) (twinned with FWHM=1.8°) and on MgF2
(110) (single crystalline with FWHM=0.50°). This is illus-
trated in Fig. 4.

FIG. 2. Specular x-ray reflectivity intensity as a function of the
x-ray wave vectorqW for NiF2/Co bilayers with NiF2 thicknesses of
(a) 12 nm,(b) 38 nm, and(c) 49 nm. The dots are the acquired data
and the solid lines are fits to a fully optical reflectivity model. The
interface roughness parameters resulting from the fit are shown in
Table I. For(a) and(b) the fitted intensity below the critical edge is
larger than the measured data because at those angles that size of
the sample was smaller than the x-ray beam footprint.

TABLE I. Structural parameters obtained from the x-ray reflectivity shown in Fig. 2.t are the thicknesses
and s are the interface roughness parameters. All values in nanometers. Uncertainties fort are <±0.2 nm
and<±0.2 nm fors.

NiF2 t Co t MgF2 s NiF2/subst s Co/NiF2 s MgF2/Co s air/MgF2

12.0 21.1 5.0 0.3 0.2 1.9 1.0

38.0 15.9 5.0 0.4 0.3 1.2 0.8

49.0 15.8 5.0 0.3 0.3 1.0 1.0

FIG. 3. u-2u x-ray diffraction scans of the samples used in this
study. The observed NiF2 reflections are indicated by the dotted
vertical lines. The dashed vertical line is the position of the Co fcc
(111) or hcp (0001) reflection. The bottom panel is a scan of the
substrate without overlayers, and the MgF2 (110) and (220) peaks
are labeled. The other peaks in the bottom panel, labeled with as* d
on the top panel, are unidentified substrate impurities.
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X-ray diffraction f scans demonstrated that the NiF2
grows epitaxially on the MgF2. Figures 5(a) and 5(b) show
the in-planef scans of the 60 nm thick single NiF2 film and
its substrate. The scans were carried out with the incident
beam and the detector fixed at the NiF2 (332) and MgF2
(332) Bragg conditions while the sample was rotated about

the surface normal. Combining the out-of-plane and in-plane
scans, the epitaxial relationship was determined to be NiF2
[001] i MgF2 [001] and NiF2 [110] i MgF2 [110]. This was
confirmed by RHEED patterns obtained after the NiF2 layer
growth, as shown in Fig. 6. This pattern, obtained with the
incident beam along the NiF2 [110] direction for the 60 nm
thick sample, was only twofold symmetric as a result of the
twofold symmetry of the(110) surface. Furthermore, the
streaky nature of the pattern qualitatively indicates that the
surface is crystalline and smooth. The in-plane lattice param-
eters were determined from Bragg reflections with a compo-
nent of qW being parallel and perpendicular to the in-plane
[001] direction. Figure 7 showsu-2u scans of the NiF2 (332)
and(420) Bragg reflections, as well as the fittings to Gauss-
ian line shapes. After transforming the base vectors from bct
a=f100g, b=f010g, andc=f001g to a8=f110g, b8=f110g, and

FIG. 4. Rocking curves for the(220) peaks of(a) 60 nm NiF2

grown on MgF2 (110); (b) 68 nm FeF2 grown on MgF2 (110); and
(c) 69 nm FeF2 grown on MgO (100). All samples were grown
under similar conditions. Samples grown on MgF2 are epitaxial
single crystalline while the sample grown on MgO(100) is twinned
with two equivalent in-planec axes. The circles are the data and the
solid curves are fits to Lorentzian line shapes. The widths of the fits
are 0.19°, 0.50°, and 1.8°, respectively.

FIG. 5. Typicalf scans for the(a) NiF2 (332) and (b) MgF2

(332) Bragg reflections used to determine the epitaxial relationship
of NiF2 to the substrate: NiF2 [001] i MgF2 [001] and NiF2 [110] i
MgF2 [110]. Lines are guides to the eye.

FIG. 6. RHEED pattern of the 60 nm NiF2 sample with the
electron beam incident parallel to NiF2 [110] direction.

FIG. 7. u-2u scans of the(332) and(420) peaks of a 60 nm NiF2
sample. The two peaks correspond to the Cu Ka1 and Cu Ka2 wave-
lengths. The data are the dots and the curves are fits to two
Gaussians.
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c8=f001g, we see that the(332) and (420) reflections in the
bct coordinate system become(302) and(310) reflections in
the new indexing system. Because the[110] direction is the
growth direction, and thea8 lattice parameter is known from
the out-of-plane scan,c8 and b8 can be easily calculated.
Results are shown in Table II, along with the lattice constant
of bulk NiF2 and MgF2 and the[110] and [001] lattice pa-
rameters for the other samples used in this study. From the
table it is clear that the NiF2 contracts along[001] andf110g
directions due to the smaller lattice constant of the MgF2
substrate. However, along the surface normal, such restric-
tion does not exist, leading to a lattice expansion along that
direction. Althoughd110 was not directly measured for the
thinner films, it is safe to assume that it is similar to the
60 nm film value because of the similard001 values. Note
that within the uncertainty of our measurements there is very
little variation of the lattice parameters as a function of NiF2
thickness, indicating that the strain is similar in all of our
thin-film samples. The width of diffraction peaks withqW per-
pendicular to the surface and partially in the plane17 indi-
cated that the out-of-plane and in-plane coherence lengths for
the 60 nm film were 35.7 nm and 29.4 nm, respectively.

B. General magnetic properties of the samples

Representative magnetization hysteresis loops for the
49 nm sample are shown in Fig. 8. Figures 9–11 show how
the exchange bias, coercivitysHCd, and neutron magnetic
peak intensity depend on temperature for the 49 nm, 38 nm,
and 12 nm samples, respectively. In all the magnetization
measurementsHCF=2 kOe was applied parallel to the NiF2
[110] direction. Note that for the two thicker samplesHC has
a peak that doesnot coincide with TB, unlike what is ob-
served in single crystal FeF2/Co and twinned FeF2/Fe
samples, where the position of the peak coincides with
TB.23–25The origin of this peak in FeF2 has been attributed to
short-range order aboveTN,25 to the properties of the surface
antiferromagnetic susceptibility,23 or to uncompensated spins
due to domain formation in the antiferromagnet.26 A similar
mechanism may be responsible for the behavior in NiF2.
Also note that for the 49 nm sampleHE.0, which also oc-
curs for FeF2 cooled in high fields.27 We have verified that
HE,0 atT=5 K when cooling inHCF=1 kOe. These issues

will be studied in more detail in a future publication.

C. Enhancement of the NiF2 Néel temperature

Table III summarizesTN andTB for the different samples.
Except for the thinnest sample,TB, TN<81 K, a significant

TABLE II. Lattice constantsdhkl for NiF2. Bulk NiF2 and MgF2

values obtained from Refs. 10 and 22, respectively. NiF2 thin-film
values obtained from this work. The 60 nm sample does not have a
Co overlayer. Values in nanometers. Uncertainties for thin-film lat-
tice parameters are ±0.0002 nm.

Sample d110 d110 d001

Bulk MgF2 0.3267 0.3267 0.3040

Bulk NiF2 0.3289 0.3289 0.3084

60 nm NiF2 0.3307 0.3272 0.3056

49 nm NiF2 0.3304 0.3058

38 nm NiF2 0.3304 0.3061

12 nm NiF2 0.3302 0.3061

FIG. 8. Magnetization hysteresis loops for the 49 nm
NiF2/15.8 nm Co bilayer sample. Data obtained atT=90 K ssd
andT=5 K s•d, the latter after field cooling inHCF=2 kOe.H and
HCF were applied along the NiF2 [110] direction.

FIG. 9. (a) Exchange bias and coercive field of a 49 nm
NiF2/15.8 nm Co bilayer as a function of temperature after cooling
in HCF=2 kOe.(b) Temperature dependence of the(001) NiF2 neu-
tron magnetic peak intensity after field cooling inHCF=550 Oe and
HCF=0. Solid lines are linear fits to the data points close toTN for
HCF=0. The intersection of the lines yieldsTN. The dashed vertical
line indicatesTB and the solid vertical line indicatesTN.

EXCHANGE BIAS AND ENHANCEMENT OF THE NÉEL… PHYSICAL REVIEW B 69, 214416(2004)

214416-5



enhancement over the acceptedTN of bulk NiF2 s73.2 Kd.
The value for the thinnest sample, obtained from Fig. 11, is
actually a lower, conservative bound. The actual Néel tem-
perature for this sample could be as high as 85 K, but the
relatively weak signal nearTN makes it impossible to obtain
a better measurement. An important question is whetherTB is
enhanced by a largerTN of the NiF2 film. If so, the question
is whether it results from a proximity effect, where the Co
film, due to its high Curie temperature(TC=1388 K in bulk
form), causes the NiF2 to order at an unusually high tempera-
ture. As mentioned above, this has been observed experimen-
tally in Fe3O4/CoO multilayers and has also been confirmed
theoretically using Monte Carlo simulations.28 Note that the
values ofTN obtained from neutron data with and without
field cooling for the 49 nm and 38 nm samples are almost
identical, taking into account the error bars, indicating that
TN does not depend onHCF. The background of the magnetic
(001) peak is due to the nuclear contribution of the MgF2
substrate. The integrated intensity of(001) peak(not shown
here) gives exactly the same temperature dependence as that
of the peak intensity.

We also measured the magnetization along the[110] di-
rection of a 60 nm thick single NiF2 film with no Co over-
layer, in addition to neutron-diffraction measurements. Fig-
ure 12(a) shows the NiF2 (001) peak intensity as a function

of temperature after field coolingsHCF=550 Oed and zero-
field cooling. Note thatTN=81 K, as was the case for the
bilayer samples shown in Figs. 9 and 10, indicating that the
enhancement ofTN is not due to the proximity effect. Figure
12(b) shows magnetic susceptibilityx, defined asx=M /H,
of this sample with a 2.3 kOe field applied along the NiF2
[110] direction as a function of temperature, after cooling
from T=100 K to T=5 K in HCF=2 kOe. Because NiF2 is
only a weak ferromagnet, the peak inx corresponds toTN.14

The inset of Fig. 12(b) showsdx /dT, from which we deter-
mined that the peak ofx is atTN=79.7 K. This result indeed
agrees very well with the neutron-scattering result; the small
disagreement may be due to different thermometry set-ups.

FIG. 10. (a) Exchange bias and coercive field of a 38 nm
NiF2/15.9 nm Co bilayer as a function of temperature after cooling
in HCF=2 kOe.(b) Temperature dependence of the(001) NiF2 neu-
tron magnetic peak intensity after field cooling inHCF=600 Oe and
HCF=0. Solid lines are linear fits to the data points close toTN for
HCF=0. The intersection of the lines yieldsTN. The dashed vertical
line indicatesTB and the solid vertical line indicatesTN.

FIG. 11. (a) Exchange bias and coercive field of a 12 nm
NiF2/21.1 nm Co bilayer as a function of temperature after cooling
in HCF=2 kOe.(b) Temperature dependence of the(001) NiF2 neu-
tron magnetic integrated peak intensity after field cooling inHCF

=0. Solid lines are linear fits to the data points close toTN for
HCF=0. The intersection of the lines yieldsTN. The dashed vertical
line indicatesTB and the solid vertical line indicatesTN.

TABLE III. Néel sTNd and blockingsTBd temperatures for dif-
ferent samples.TN was determined from neutron diffraction andTB

from magnetization measurements. The 60 nm sample has no Co
overlayer and thereforeTB is not available.

NiF2 thickness(nm) TB (K) TN (K)

12 53.1±0.5 78s−1+7d
38 81.5±0.5 83.7±2

49 81.0±0.5 82.3±2

60 81.4±2
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The values ofTN and TB for all the samples are shown in
Table III.

To interpret the enhancement of the films’TN with respect
to bulk material, we first note that bulk NiF2 has lattice con-
stants that are similar to those of the MgF2 substrate. As
indicated by the x-ray structural analysis above(Table II),
the NiF2 films grow strained in order to be lattice matched to
the substrate crystal structure. This strain causes a significant
orthorhombic distortion of the lattice throughout the entire
thickness. It is therefore important to determine whether this
distortion is responsible for the enhancement ofTN. Unfor-
tunately, the dependence ofTN on pressure or lattice param-
eters has not been studied in NiF2, so it is not possible to
directly compare our results with experimental data. One
may assess this issue by using results from other magnetic
materials. Specifically, in many antiferromagnets a change in
the unit-cell volume is related to a change in effective ex-
change interaction by29

dsln Jd
dsln Vd

= − gm, s2d

whereV is the volume of the unit cell,dsln Jd< lnsJs/Jod,
and dsln Vd< lnsVs/Vod. HereJs and Vs refer to the sample
exchange and volume, respectively, andJo andVo refer to the
exchange and volume of the bulk crystal. Thisgm is an ef-
fective magnetic Grüneisen constant which for a wide array
of magnetic materialsgm=10/3, including FeF2 (Ref. 30)
and MnF2.

31 Assuming that NiF2 obeys the 10/3 law; using

the mean-field result thatTN~J (known to be accurate for
calculating changes inTN) (Ref. 32); and using V
=2d110d110d001, we obtain thatDTN=2.4 K. This is smaller
than our experimental value of<8 K by a factor of 3. The
lattice mismatch at low temperatures between MgF2 and
NiF2 is smaller than at room temperature,33 so the expected
change inTN discussed here is an upper bound. The large
relative change of thec-axis lattice parameter would seem to
indicate that a change inJ1 might be responsible for the
enhancedTN, but this is unlikely becauseJ1 is more than 60
times smaller in magnitude thanJ2.

Our results therefore suggest thatgm is anomalous for
NiF2. One possibility is that the fluorine ions are displaced
from their equilibrium positions, independent of the lattice
expansion or contraction, which could have a significant ef-
fect on the exchange interactions. NiF2 is known to have a
significant magnetostrictive shift of the fluorine ions at lowT
with respect to the value aboveTN, unlike FeF2.

33,34 Further
neutron and x-ray measurements are needed todetermine
whether this is the case.

D. Reentrant exchange bias

Figure 10 shows the exchange bias and the NiF2 (001)
peak intensity as a function of temperature in the 38 nm
bilayer sample. For a small cooling fieldsHCF=2 kOed HE

shows a reentrant behavior. In other words, it goes to zero at
T,55 K and then becomes negative before it vanishes again
at T=81 K. On the other hand, if the cooling field is suffi-
ciently large(HCF=50 kOe, see Fig. 13), HE remains posi-
tive before it vanishes at the same blocking temperature,
TB=81 K. This behavior is similar to the change in sign of
HE as a function ofT in FexZn1−xF2/Co bilayers, withx
,0.80, whereHE can be zero at an intermediate temperature
for moderate cooling fields.35 For the case of the NiF2, when
HE goes to zero as the sample is warmed, instead of becom-
ing positive at higher temperatures, it becomes negative once
again. It is unclear whether the change in sign ofHE in
FexZn1−xF2 and the reentrant effect in NiF2 are related. How-
ever, it is possible that for NiF2 this is a result of a reorien-
tation of the antiferromagnetic domains from the(100) plane
to the (010) plane or vice versa. A similar reentrant effect,
although less marked, has been observed in FePt3/Fe

FIG. 12. (a) Temperature-dependent intensity of the(001) mag-
netic reflection for the 60 nm NiF2 film after field cooling and zero-
field cooling. Note thatTN=81 K. Lines are linear fits to the data
close toTN for HCF=0. (b) Magnetic susceptibilityx=M /H as a
function of temperature after cooling the sample fromT=100 K to
T=5 K in HCF=2 kOe. Both the cooling field and the measuring
field sH=2300 Oed are parallel to the NiF2 [110] direction. The
inset shows the first derivative ofx with respect to the temperature.
TN=79.7 K from the point at whichdx /dT=0.

FIG. 13. Exchange bias for two cooling fields as a function of
temperature for the 38 nm NiF2/15.9 nm Co sample.
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bilayers36 and its origin is believed to result from a spin
reorientation in the antiferromagnet, similar to the one dis-
cussed here, that has been observed via neutron scattering.37

Further neutron-diffraction measurements of the magnetic
(100) peak are planned to determine whether this is true.
Unfortunately a substrate contamination peak precluded us
from performing these measurements with high accuracy in
these samples, so better substrates will be needed.

E. Reduction of TB in thin NiF 2

Figure 11(a) showsHE as a function of temperature for a
12 nm thick NiF2 sample. In this caseTB is reduced toT
<53 K. However, the integrated NiF2 (001) peak intensity,
as shown in Fig. 11(b), indicates thatTN<78 K, with an
uncertainty of approximately −1+7 K. Hence,TN is certainly
above 70 K, and is possible as high as 85 K. Note that all the
data in Fig. 11(b) are plotted after subtracting the nuclear
MgF2 (001) peak measured atT=90 K. This shows that the
reducedTB is not due to a diminishedTN, but is probably due
to the AF domains in the NiF2 becoming unpinned aboveT
=53 K. This is consistent with measurements in single crys-
tals that suggest that the magnetization in thea-b plane be-
comes isotropic close toTN.14 It is not surprising that for
small NiF2 thicknesses this effect would be magnified be-
cause the total magnetic anisotropy energy is proportional to
the volume, and therefore, the thickness of the film. It is also
interesting to note that the temperature at whichHE goes to
zero for the first times53 Kd in the 38 nm sample coincides
with TB for the 12 nm sample. Further measurements are

required to determine whether this is a coincidence, or ifT
=50 K is the temperature where the magnetic in-plane aniso-
tropy of the NiF2 “softens” up. In any case, this is a clear
experimental demonstration that, in general, a lowTB is not
necessarily due to a lowerTN, due to finite-size effects, for
example, but could be due to other factors, such as a smaller
effective anisotropy energy that can no longer withstand its
magnetic structure at higher temperatures.

IV. CONCLUSIONS

In summary,(110) NiF2 was epitaxially grown on(110)
MgF2 substrates via MBE. In thicker NiF2, TN and TB are
significantly larger than the bulk value. This enhancement of
TN is likely to be a result of the strain in NiF2 due to a small
lattice mismatch between the NiF2 films and the MgF2 sub-
strates. In order to calculate the enhancement ofTN due to
the strain in NiF2, the dependence ofJ2 not only on the
lattice parameters, but possibly also on the position of the
fluorine ions is needed. A reentrant exchange bias behavior
was also observed for the 38 nm sample. For the thinnest,
12 nm sample,TB!TN, indicating that the antiferromagnet’s
anisotropy is not enough to maintain the exchange bias at
higher temperatures belowTN, even though long-range order
in NiF2 is maintained.
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